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EXECUTIVE SUMMARY 
 

AIG, in cooperation with CSIRO, Sydney Australia has evaluated, validated, and demonstrated 
Hyperion hyperspectral data for geologic applications.  Three test sites were originally proposed for 
analysis, the northern Grapevine Mountains, Nevada (northern Death Valley CA/NV); Oatman, 
Arizona; and Virginia City, Nevada. Hyperion data analysis was conducted for these sites along with 
additional sites added to the study based on data availability.  The additional sites are the Los 
Menucos area, Argentina; Steamboat, NV; and Cuprite, Nevada. Cumulatively, these test sites 
provide geologically diverse terrains allowing validation of Hyperion data across a variety of 
geologic environments.  Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data served as 
the baseline for comparative determination of Hyperion data characteristics and performance.  
Previous field and airborne mapping and spectral characterization allowed AIG/CSIRO to assess 
Hyperion suitability and performance for geologic mapping and mineral resource appraisal.  Results 
over sites with established ground truth and years of airborne hyperspectral data show that Hyperion 
data from the short-wave-infrared (SWIR) spectrometer can be used to produce useful geologic 
(mineralogical) information.  Minerals mapped include carbonates, chlorite, epidote, kaolinite, 
alunite, buddingtonite, muscovite, hydrothermal silica, and zeolite.  Data collected under optimum 
conditions (summer season, bright targets, well-exposed geology) indicate that Hyperion meets pre-
launch specifications and allows subtle distinctions such as determining the difference between 
calcite and dolomite and mapping solid solution differences in micas caused by substitution in 
octahedral molecular sites.  Comparison of airborne hyperspectral data (AVIRIS) to the Hyperion 
data establishes that Hyperion provides similar basic mineralogical information, with the principal 
limitation being reduced mapping of fine spectral detail under less-than-optimum acquisition 
conditions (winter season, dark targets) based on lower signal-to-noise ratios (SNR).   The case 
histories demonstrate the analysis methodologies and level of information available from the 
Hyperion data.  They also show the viability of Hyperion as a means of extending hyperspectral 
mineral mapping to areas not accessible to aircraft sensors.  The analysis results demonstrate that 
spaceborne hyperspectral sensors can produce useful mineralogical information, but also indicate 
that SNR improvements are required of future spaceborne sensors to allow the same level of 
mapping that is currently possible from airborne sensors such as AVIRIS.  Results from this research 
provide valuable information about hyperspectral sensing from space that can be used to help 
bootstrap future hyperspectral satellite missions. 
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 1.0 OBJECTIVES 
 

Original Objectives from the Proposal 
AIG/CSIRO’s original objectives for the Hyperion research were: 
 
1. To evaluate Hyperion to determine its performance and to validate with respect to requirements 

for applied and commercial use of space-based hyperspectral data.  Specifically, we proposed to 
evaluate, validate, and demonstrate Hyperion in the role of geologic mapping and in the context 
of monitoring the processes that control the occurrence of non-renewable mineral resources. 

 
2. To examine the issues of spectral and spatial scaling using Hyperion data.  We proposed to use 

Hyperion data to examine scaling issues inherent to analysis of satellite hyperspectral data 
(subpixel detection, identification, quantification, and mapping) and to validate Hyperion 
through comparison with airborne hyperspectral datasets, laboratory and field spectral 
measurements, and ARIES-1 simulations. 

 
The AIG/CSIRO proposal was for evaluation, validation, and demonstration of Hyperion’s 
capabilities for geologic mapping and mineral resource assessment, offering a low-cost, high-
experience, high-leverage approach. The effort drew heavily on previous work and outside funding 
sources to maximize the cost-effectiveness for the Hyperion evaluation and validation.  Key results 
were achieved by examining Hyperion data collected over well-understood geological sites.  Results 
include 1) practical and important demonstrations of Hyperion data for geological mapping and 
mineral resource assessment; 2) validation of the spatial, spectral and radiometric performance of 
Hyperion using real-world applications as the defining metric; 3) validation of analysis methods 
originally developed for airborne hyperspectral data for use with satellite-based sensors. 
 
The following restatement of the project objectives provides a simplified overview of the driving 
factors behind the analysis: 
 
Restated Objectives 

1. To evaluate Hyperion’s capacity to map known geology and alteration mineralogy exposed at 
various geologic validation sites  

2. To compare this capacity against other hyperspectral data / systems and ground truth 
3. With the aim of understanding Hyperion performance and matching future sensor needs 

against geologic applications and requirements 
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2.0  Background:  The Hyerspectral Mineral Mapping Process 
 
The methods described here illustrates AIG’s approach to mineral mapping using hyperspectral data.  
These methods have been tested extensively using AVIRIS and other airborne hyperspectral 
datasets.  The Hyperion data analysis represents the first time that this approach has been applied to 
satellite hyperspectral datasets. 
 
We believe that hyperspectral data analysis should be cast in the same format as other geophysical 
data analysis processes.  First, the data must be fully calibrated and well characterized.  Then 
instrumental and natural influences on the data, unrelated to our signal of interest, should be 
modeled and removed via a data reduction step.  We use a spectral mixing model to derive the 
locations and spectral signatures of various key scene components.  These derived components, or 
endmembers, are identified using spectral matching methods and their apparent abundances mapped 
over the entire hyperspectral scene.  Finally, the results are geometrically rectified and map 
registered.  These steps are shown schematically in Figure 1.  The details of the methodology are 
described in the following sections. 

 
 
Figure 1:  AIG Hyperspectral Analysis Scheme. Note the “hourglass” shape, which schematically 

represents the reduction of the hyperspectral data to just a few key spectra at the “neck” 
and then expansion back to spectral maps of the full dataset. 
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Analytical Imaging and Geophysics LLC (AIG) has evolved a “standardized” hyperspectral data 
analysis methodology (Figure 1) that has been tested for a variety of data (Boardman et al, 1995; 
Kruse et al., 1996a,b; Kruse et al., 2001).  These approaches are implemented and documented 
within the “Environment for Visualizing Images” (ENVI) software system originally developed by 
AIG scientists (now an Eastman Kodak/Research Systems Inc [RSI] commercial-off-the-shelf 
[COTS] product) (Research Systems Inc, 2001).  They are also briefly described below.  This is not 
the only way to analyze these data, but we have found that it provides a consistent way to extract 
spectral information from hyperspectral data without a priori knowledge or requiring ground 
observations.  The analysis approach consists of the following steps:  
 

1. correction for atmospheric effects using an atmospheric model “ACORN” (AIG, 2001)  
2. spectral compression, noise suppression, and dimensionality reduction using the 

Minimum Noise Fraction (MNF) transformation (Green et al., 1988; Boardman, 1993),  
3. determination of potential endmembers (unique spectra) using geometric methods (Pixel 

Purity Index – “PPI”) (Boardman and Kruse, 1994; Boardman et al., 1995) 
4. extraction of endmember spectra using n-dimensional scatter plotting (Boardman et al., 

1995) 
5. identification of endmember spectra using visual inspection, automated identification, 

and spectral library comparisons (Clark et al., 1990; Kruse and Lefkoff, 1993; Kruse et 
al., 1993a) 

6. production of mineral maps using a variety of mapping methods - the “Spectral Angle 
Mapper” (SAM) (Kruse et al., 1993b) and “Mixture-Tuned-Matched-Filtering” (MTMF) 
(Boardman, 1998) were used for this study. The final step also usually included 
geocorrection of the data to map coordinates. 

 
Atmospheric Corrections are a Prerequisite for Most Analysis 
Remote sensing measurements of the Earth's surface are strongly influenced by the atmosphere 
(Goetz et al., 1985).  Both scattering and absorption by gases and particulates affect the amount and 
wavelengths of light reaching the sensors.  Absorption by atmospheric gases is dominated by water 
vapor with smaller contributions from carbon dioxide, ozone, and other gases (Gao and Goetz, 
1990).  Strong atmospheric water absorption bands make the atmosphere opaque in many regions 
(for example the 1.4 and 1.9 µm regions) and only small atmospheric windows are available for 
terrestrial remote sensing. 
 
One of the most critical steps in most imaging spectrometer data analysis strategies is to convert the 
data to reflectance, principally so that individual spectra can be compared directly with laboratory or 
field data for identification. Our analysis methods are generally applicable to both airborne and 
satellite data, however, the methodology requires processing radiance-calibrated data to apparent 
reflectance.  (If comparison to reflectance isn’t required, then this step may be eliminated, but for 
most work, this is a requirement).  Ideally, imaging spectrometer data should be calibrated to 
absolute reflectance using onboard calibration.  Onboard calibration, however, is typically not 
available.   
 
Atmospheric CORrection Now (ACORN), currently used for correction of both airborne and 
satellite hyperspectral data, is a commercially-available, enhanced atmospheric model-based 
software that uses licensed MODTRAN4 technology to produce high quality surface reflectance 
without ground measurements (AIG, 2001).  The AVIRIS and Hyperion data used in our analyses 
were both converted to apparent reflectance using ACORN.  Appropriate model parameters for each 
instrument (eg: sensor altitude), collection date (eg: date, time, seasonal atmospheric model), and 
location (eg: latitude/longitude, average elevation) were used, otherwise, all other parameters were 
identical for both datasets  The output of ACORN is an image showing the spatial distribution of 
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various water vapor concentrations as derived for each pixel of the AVIRIS data and scaled surface 
apparent reflectance.  This method makes it possible to quantitatively derive physical parameters and 
analyze data from different regions and different times without a priori knowledge.  We can also 
compare and analyze imaging spectrometry data acquired by different instruments, compare to field 
and laboratory spectral measurements, or to spectra generated using theoretical models.  Correction 
to reflectance was critical for analysis of the Hyperion data. 
 
MNF Transform 
A “Minimum Noise Fraction” (MNF) Transform is used to reduce the number of spectral 
dimensions to be analyzed.  The MNF transformation is a linear transformation related to principal 
components that orders the data according to signal-to-noise-ratio (Green et al., 1988).  It can be 
used to determine the inherent dimensionality of the data, to segregate noise in the data, and to 
reduce the computational requirements for subsequent processing (Green et al., 1988; Boardman and 
Kruse, 1994). The MNF transformation can be used to partition the data space into two parts:  one 
associated with large eigenvalues and coherent eigenimages, and a second with near-unity 
eigenvalues and noise-dominated images.  By using only the coherent portions in subsequent 
processing, the noise is separated from the data, thus improving spectral processing results. 
 
Pixel Purity Index (PPI) 
Based on MNF results, the lower order MNF bands are usually set aside and the higher order bands 
selected for further processing.  These are used in the “Pixel Purity Index” (PPI), processing 
designed to locate the most spectrally extreme (unique or different or “pure”) pixels (Boardman et 
al., 1995).  The most spectrally pure pixels typically correspond to mixing endmembers.  The PPI is 
computed by repeatedly projecting n-dimensional scatterplots onto a random unit vector.  The 
extreme pixels in each projection are recorded and the total number of times each pixel is marked as 
extreme is noted.  A PPI image is created in which the digital number of each pixel corresponds to 
the number of times that pixel was recorded as extreme.  A histogram of these images shows the 
distribution of “hits” by the PPI.  A threshold is interactively selected using the histogram and used 
to select only the purest pixels in order to keep the number of pixels to be analyzed to a minimum.  
These pixels are used as input to an interactive visualization procedure for separation of specific 
endmembers. 
 
n-Dimensional Visualization 
Spectra can be thought of as points in an n-dimensional scatterplot, where n is the number of bands 
(Boardman, 1993; Boardman et al., 1995).  The coordinates of the points in n-space consist of “n” 
values that are simply the spectral reflectance values in each band for a given pixel.  The distribution 
of these points in n-space can be used to estimate the number of spectral endmembers and their pure 
spectral signatures, and provides an intuitive means to understand the spectral characteristics of 
materials.  In two dimensions, if only two endmembers mix, then the mixed pixels will fall in a line 
in the histogram.  The pure endmembers will fall at the two ends of the mixing line.  If three 
endmembers mix, then the mixed pixels will fall inside a triangle, four inside a tetrahedron, and so 
on.  Mixtures of endmembers "fill in" between the endmembers.  All mixed spectra are "interior" to 
the pure endmembers, inside the simplex formed by the endmember vertices, because all the 
abundances are positive and sum to unity. This "convex set" of mixed pixels can be used to 
determine how many endmembers are present and to estimate their spectra. 
 
In practice, the thresholded pixels from the MNF images are loaded into an n-dimensional scatterplot 
and rotated in real time on the computer screen until “points” or extremities on the scatterplot are 
exposed.  These projections are “painted” using Region-of-Interest (ROI) definition procedures and 
then rotated again in 3 or more dimensions (3 or more bands) to determine if their signatures are 
unique in the MNF data.  Once a set of unique pixels are defined, then each separate projection on 
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the scatterplot (corresponding to a pure endmember) is exported to a ROI in the image.  Mean 
spectra are then extracted for each ROI to act as endmembers for spectral mapping. 
 
Spectral Identification 
Spectral identification of the endmembers extracted using the n-dimensional scatterplotting is based 
on a combination of visual inspection of spectral plots and manual/automated comparison to spectral 
libraries (Clark et al., 1990, Kruse and Lefkoff, 1993, Kruse et al., 1993a).  Spectra are visually 
examined to identify key spectral features locations, depths, and shapes, and these are compared 
against application-specific spectral libraries. Automated methods that compare overall spectral 
shape and specific features are also applied to determine candidate materials and to produce 
mathematical comparisons.  Once names have been assigned to individual endmember spectra, then 
these can be passed forward to the spectral/spatial mapping algorithms. 
 
Mapping Methods 
AIG uses a variety of mapping methods depending on the data type and the desired results.  The 
Spectral Angle Mapper (SAM) Classification and Mixture-Tuned Matched Filtering were used for 
this research.  The Spectral Angle Mapper (SAM) is an automated method for comparing image 
spectra to individual spectra (Boardman, Unpublished data; Kruse et al., 1993b).  The algorithm 
determines the similarity between two spectra by calculating the spectral angle between them, 
treating them as vectors in a space with dimensionality equal to the number of bands.  Because this 
method uses only the vector direction of the spectra and not their vector length, the method is 
insensitive to illumination.  The result of the SAM classification is a color-coded image showing the 
best SAM match (the predominant material) at each pixel.  Additionally, rule images are calculated 
that show the actual angular distance (in radians) between each spectrum in the image and each 
reference or endmember spectrum in n-dimensional space. Darker pixels in the rule images represent 
smaller spectral angles and thus spectra that are more similar to the endmember spectra.  For the 
purposes of display, the dark pixels are inverted, so that the best matches appear bright.  These 
images present a good first cut of the spatial distribution of spectrally unique materials. 

Geologic surfaces are rarely composed of a single uniform material, however, thus it may be 
necessary to use mixture modeling to determine what materials cause a particular spectral 
“signature” in imaging spectrometer data.  Spectral mixing is a consequence of the mixing of 
materials having different spectral properties within a single image pixel.  If the scale of the mixing 
is large (macroscopic), then the mixing occurs in a linear fashion.  A simple additive linear model 
can be used to estimate the abundances of the materials measured by the imaging spectrometer.  
Each mixed spectrum is a linear combination of the "pure" spectra, each weighted by their fractional 
abundance within the pixel, a simple averaging (Boardman, 1989).  

While the SAM algorithm does provide a means of identifying and spatially mapping materials, it 
only picks the best match to a given spectrum.  Mixture-Tuned Matched Filtering is a hybrid method 
based on the combination of well-known signal processing methodologies and linear mixture theory.  
Matched filtering (MF), based on well-known signal processing methodologies, maximizes the 
response of a known endmember and suppresses the response of the composite unknown 
background (Harsanyi and Chang, 1994).  MF also provides a rapid means of detecting specific 
minerals based on matches to specific library or image endmember spectra, again, however, it fails 
to consider spectral mixing.  Matched filter results are usually presented as gray-scale images with 
values from 0 to 1.0, which provide a means of estimating relative degree of match to the reference 
spectrum (where 1.0 is a perfect match).  Earth surfaces, however, are rarely composed of a single 
uniform material, thus it is usually necessary to consider mixture modeling to determine what 
materials cause a particular spectral “signature” in imaging spectrometer data (Boardman et al., 
1995).  Mixture-Tuned-Matched-Filtering (MTMF) utilizes the MF theory above, but also includes a 
simple additive linear mixing model to estimate the abundances of the materials measured by the 
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hyperspectral sensor (Boardman, 1998) – in effect performing partial unmixing.  Two dimensional 
scatterplotting of the MF score versus the MTMF Infeasibility score can be used to produce color-
coded maps for materials occurring above specific abundance thresholds. Individual grayscale MF 
images can be used to show material abundances. 

The AIG methods described above demonstrate how the inherent information in imaging 
spectrometry data can be extracted.  It should be noted, however, that if the spectral signatures to be 
mapped are already known, and hyperspectral data and endmember spectra are properly scaled, then 
AIG’s advanced mapping methods can be applied directly without going through the entire data-
reduction procedure.  Additionally, we would like to reiterate that this is not the only way to analyze 
these data, but we have found that it provides a consistent way to extract spectral information from 
hyperspectral data without a priori knowledge or requiring ground observations.   
 



 10

3.0 GEOLOGIC VALIDATION SUMMARIES 
The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) represents the current state of the art 
airborne hyperspectal system and our principal “ground truth” (along with selected ground spectral 
measurements) for this investigation.  AVIRIS, flown by NASA/Jet Propulsion Laboratory (JPL) is a 
224-channel imaging spectrometer with approximately 10 nm spectral resolution covering the 0.4 – 
2.5 µm spectral range (Green et al., 1999).  The sensor is a whiskbroom system utilizing scanning 
foreoptics to acquire cross-track data.  The IFOV is 1 milliradian.  Four off-axis double-pass 
Schmidt spectrometers receive incoming illumination from the foreoptics using optical fibers.  Four 
linear arrays, one for each spectrometer, provide high sensitivity in the 0.4 to 0.7 µm, 0.7 to 1.2 µm, 
1.2 to 1.8 µm, and 1.8 to 2.5 µm regions respectively.  AVIRIS is flown as a research instrument on 
the NASA ER-2 aircraft at an altitude of approximately 20 km, resulting in approximately 20-m 
pixels and a 10.5-km swath width.  Since 1998, it has also been flown on a Twin Otter aircraft at low 
altitude, yielding 2 – 4m spatial resolution. 
 
For comparison, Hyperion is a satellite hyperspectral sensor covering the 0.4 to 2.5 µm spectral 
range with 242 spectral bands at approximately 10nm spectral resolution and 30m spatial resolution 
from a 705km orbit (Pearlman et al., 1999).  Hyperion is a pushbroom instrument, capturing 256 
spectra each with 242 spectral bands over a 7.5Km-wide swath perpendicular to the satellite motion.  
The system has two grating spectrometers; one visible/near infrared (VNIR) spectrometer 
(approximately 0.4 – 1.0 µm) and one short-wave infrared (SWIR)) spectrometer (approximately 0.9 
– 2.5 µm).  Data are calibrated to radiance using both pre-mission and on-orbit measurements.  Key 
AVIRIS and Hyperion characteristics are compared in Table 1 and discussed further in Green et al., 
2003. 
 

Table 1:  AVIRIS/Hyperion Sensor Characteristics Comparison 
 

HSI 
Sensor 

Spectral 
Resolution 

Spatial 
Resolution 

Swath 
Width 

SWIR 
SNR 

AVIRIS 10 nm 2 - 20 m 1 - 12 km ~500:1 
Hyperion 10 nm 30 m 7.5 km ~50:1 

 
 
Data Acquisition 
Hyperion hyperspectral data were originally requested for the three primary test sites, Virginia City, 
NV; Oatman, AZ; and northern Death Valley, CA.  Additional Hyperion validation sites were added, 
however, because the late November 2000 launch occurred during the northern hemisphere winter. 
The following is a list of Hyperion data collected and delivered in support of this investigation. 
 

Table 2: Kruse et al. Hyperion Data collects 
 

Los Menucos, Argentina 
25 Feb 2001: EO12300882001056111PP   (some clouds) 
30 Apr 2001: EO12300882001120111PP (mostly clouds) 
16 May 2001: EO12300882001136111PP (all clouds) 
 1 June 2001: EO12300882001152111PP (partly clouds) 
17 June 2001: E012300882001168111PP  (clear) 
  3 July 2001:  EO12300882001184111PP  (mostly clouds) 
19 July 2001: EO12300882001200112PP  (all clouds) 
10 Dec 2001: EO12300882001344111PP (mostly clouds) 
 
New Zealand Hot Springs & Mt Tarawera 
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21 Dec 2000: EO10720872000355111P0  (all clouds) 
21 Jan 2001: EO10720872001021111P0  (all clouds) 
22 Feb 2001: EO10720872001053111P0  (all clouds) 
11 Apr 2001: EO10720872001101111PP (all clouds) 
29 May 2001: EO10720872001149111P0 (all clouds) 
10 Mar 2001: EO10720872001069111PP (some clouds) 
  6 Nov 2001: EO10720872001309111P0 (mostly clouds) 
21 Nov 2001: EO10720872001325111P0 (all clouds) 
23 Dec 2001: EO10720872001357111PP (mostly clouds) 
24 Jan 2002: EO10720872002024111P0 (clear) 
 
Cuprite, NV 
 1 Mar 2001:  EO10410342001060111PP (clear) 
 
Steamboat Springs, NV 
31 Mar 2001:  EO10430332001090111P4  (some snow) 
16 Apr 2001:  EO10430332001106111P4  (all clouds) 
22 Aug 2001:  EO10430332001234110P4 (clear) 
 
Northern Death Valley, NV 
23 July 2001: EO10410342001204111P1 (clear)                 
  9 Sept 2001: EO10410342001252111P1 (clear)   
 14 Dec 2001: EO10410342001348111P1 (cloudy) 
 31 Jan 2002: EO10410342002031111P1 (snow) 
 
Virginia City, NV 
2 May 2001:  EO10430332001122111P3 (clear) 
9 June 2001:  EO10430332001170111P3 (clear)                   
 6 Aug 2001:  EO10430332001218111P3 (p. cloudy) 
 7 Sept 2001: EO10430332001250111P3 (clear) 
 
Oatman, AZ 
6 May 2001:   EO10390362001126111P0 (clear) 
 
 
SNR Calculations 
The quality of digital remote sensing data is directly related to the level of system noise relative to 
signal strength. This is usually expressed as Signal-to-Noise Ratio (SNR), a dimensionless number 
that describes overall system radiometric performance (Collwell, 1983).  System noise is tied to 
sensor design and takes into account factors such as detector performance/sensitivity, spatial/spectral 
resolution, and noise characteristics of the system electronics.  Though the noise levels for a given 
sensor are generally fixed, for remote sensing data acquisition, the signal portion of the SNR is 
affected by other external factors such as solar zenith angle, atmospheric attenuation and scattering, 
and surface reflectance, which modify the signal available to the sensor (Collwell, 1983). 
 
One common means for determining an approximate SNR for remote sensing data is to use a 
Mean/Standard Deviation method (Green et al., 1999, 2003).  This approach requires definition of a 
spectrally homogeneous area, calculation of the average spectrum for that area, and determination of 
the spectrally distributed standard deviation for the average spectrum.  SNR are normalized to 50% 
reflectance for comparison.  SNR calculated using this method are representative of those that can be 
extracted directly from the data, however, SNR for bright targets may be underestimated because of 
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homogeneity issues at higher SNR (increasing SNR may result in breakdown of apparently 
homogeneous areas into multiple materials and new homogeneous areas must be selected).  Slightly 
higher SNR values could probably be obtained through direct analysis of the data dark current signal 
(Green et al., 1999), an “Instrument SNR”, however, this isn’t always possible.  SNR calculated 
using the Mean/Standard Deviation method, an “Environmental SNR” are sensitive to acquisition 
conditions as mentioned above, and thus should be considered lower limits on performance. 
 
Analysis of approximately 14 Hyperion scenes from around the world using the Mean/Standard 
Deviation SNR method shows that there is a strong relationship between the acquisition time of year 
(which controls the solar zenith angle) and the SNR of the Hyperion data (Kruse et al., 2001, 2003).  
Calculated SNR for Hyperion SWIR data are higher in the summer and lowest in the winter (Figure 
2).  This has a direct effect on spectral mineral mapping, with lower SWIR SNR resulting in 
extraction of less detail (Kruse et al., 2001, 2002a,d, 2003).  While Hyperion data with 
approximately 25:1 SNR (Cuprite, NV) allow basic mineral identification (no separation of within-
species variability) more detail (additional endmembers) are detected and mapped using the higher 
SNR AVIRIS and Hyperion data (60:1 SNR) at the northern Death Valley site.  This is also 
important for geologic/mineral mapping, because higher SNR allows separation of similar 
endmembers such as calcite from dolomite and within-species variability such as kaolinite vs dickite.  
In the northern Death Valley case, the relatively high Hyperion SNR allows detection of 3 different 
mica endmembers with different aluminum substitution (Kruse et al., 1999).  Previous investigations 
have indicated that SNR is critical for this determination (Kruse, 1988; Kruse et al., 2002d). 

 

Figure 2: Comparison of Hyperion calculated SNR for “winter” data (left) and “summer” data 
(right).  Filled areas indicate range of SNR for 14 Hyperion scenes. 
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Study Area Results:  Los Menucos, Argentina 
The Los Menucos, Rio Negro, Argentina, site (Figure 3) is a fossil analog of hot springs similar to 
modern systems being studied by AIG in other locations around the world. The Los Menucos gold 
district was discovered in 1998 by Arminex, S.A. using regional exploration methods employing 
Landsat Thematic Mapper (TM) satellite imagery and field investigation (Franco et al., 2000; 
Gemuts and Perry, 2000; Perry and Gemuts, 2000).  This district has the largest significant 
concentration of advanced argillic, altered Permian ignimbrite and rhyolite assemblages in 
Argentina.  Alteration is related to the intrusion of Triassic-age (?) rhyolite dome complexes below 
thick Permian-age felsic volcanic rocks.  Associated with dome fields are large areas of phreatic 
breccias and hematite-rich altered oxidized zones.  Alteration is characterized by vuggy silica, quartz 
stockwork, kaolin, and alunite.   The region has potential for low-sulfidation style gold 
mineralization.  The Los Menucos region was submitted and selected as a NASA E0-1 collection site 
during 2000 to evaluate other earth observation sensors, including hyperspectral (airborne AVIRIS 
and satellite EO-1 Hyperion) as well as multispectral data sets (Landsat 7 Enhanced Thematic 
Mapper and ASTER imagery).  The results of the TM reconnaissance and AVIRIS analysis are 
presented in Kruse et al., 2002b, 2002d.  The Hyperion, ETM and ASTER results are presented in 
Kruse et al., 2002c, 2002d. 
 

 
Figure 3: Los Menucos, Argentina Site Location in Rio Negro province, Argentina.  Orange box 

marks extent of AVIRIS survey conducted during February 2001. 
 

Los Menucos Site
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AVIRIS was flown for the Los Menucos site, Argentina on a Twin Otter aircraft at low altitude on 
14-15 February 2001.  The AVIRIS dataset consists of 6 overlapping, approximately 2.7km x 30km 
north-south flightlines, at 3.5m spatial resolution.  Each flightline was processed and analyzed 
separately in reconnaissance mode (optimized for the entire dataset, not individual sites).  Two 
spectral ranges were analyzed; 1) 0.4−1.3 µm (iron oxides), and 2) 2.0–2.5 µm (clays, carbonates, 
etc).  Processing consisted of standardized hyperspectral analysis as described above to allow 
identification and mapping of key alteration minerals.  The results were map-corrected and 
combined into an image mosaic covering an approximately 10km x 30km area covering several key 
mineral prospects (Figure 4).  While the complete dataset was analyzed, only several small 
subsections of interest are presented here: 1) Cuya, 2) and Kaolinite Hills.  Other sites investigated in 
detail but not shown include 3) Carmen, 4) Lagunitas North, 5) Tanke Negro. 

        
 
Figure 4:  Left - False Color Infrared Composite (CIR) using AVIRIS bands 54, 34, 19 (0.85, 0.66, 0.55 µm) as RGB.  

Approximate site locations described in the text above are marked by number. Image is approximately 10 x 
30kms. Center – 0.4 – 1.2 µm mineral map. Right – 2.0 – 2.5 µm mineral map. 
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Los Menucos Field Reconnaissance—Mineral maps (see Figure 4 and detailed images below) were 
used along with Landsat TM mapping as base maps for field verification.  Reconnaissance was 
conducted during April 25 – 28, 2001 with the assistance of RTZ mining company geologists.  
Several prospects and other mineralogically interesting areas were visited, the rocks and alteration 
were examined, and samples were collected.  These samples were analyzed utilizing an Analytical 
Spectral Devices (ASD) “FieldSpec Full Range” field spectrometer (see http://www.asdi.com) 
provided by Jet Propulsion Laboratory.  The ASD spectrometer covers the 0.35 – 2.5 µm range with 
approximately 3nm (VNIR) and 10nm (SWIR) spectral resolution and 1nm spectral sampling.  A 
“wand” attachment containing a halogen light source was used to illuminate the samples.  This 
results in a high-quality spectrum with 2151 spectral bands, allowing identification of specific 
minerals.  Over 160 spectral measurements were made of various rocks and soils from the Los 
Menucos area.  Known mineralized areas were accurately characterized and several new prospects 
identified (Kruse et al., 2002d).  Spectral libraries were later used to refine AVIRIS results and to 
apply to EO-1 Hyperion and Landsat/ASTER multispectral evaluation. 
 
1: Cuya Prospect AVIRIS Specifics—A false color infrared (CIR) composite reference image and 
selected mineral maps overlain on AVIRIS band 34 (0.66 µm) were subsetted from the full AVIRIS 
analysis for the “Cuya” prospect (Figure 5, left).  According to the AVIRIS mapping, the mineralogy 
at Cuya is relatively simple – mostly hydrothermal silica (massive silica) and goethite with minor 
muscovite (sericite).  There is also evidence of minor kaolinite, montmorillonite, and calcite on 
disturbed surfaces based on field spectrometry (see above).  The spectral plot (Figure 5, right) shows 
a comparison of the Cuya AVIRIS spectrum for the silica (+-sericite) compared to a library spectrum 
of “opal” from the USGS spectral library (the closest library match).  Results shown in Figures 5 and 
6 are consistent with fossilized alkaline hot-springs systems.  In general, the remote AVIRIS 
measurements agree with the ASD spectral results.  Some small differences are seen in the spectra, 
principally caused by scaling differences (a small ASD spot of several centimeters vs the large 
AVIRIS pixel size of approximately 3.5m) and spectral mixing. 
 

    
 
Figure 5:  Cuya prospect.  Left, False Color Infrared (CIR) composite image.  Right, Comparison of 

Cuya AVIRIS spectrum (top), to ASD Field Spectrum (Middle), to USGS Library spectrum 
of “Opal” (bottom). 
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Figure 6:  Cuya prospect VNIR AVIRIS mineral map and spectra.  Left, VNIR Mineral map 

(blue=goethite).  Right, comparison of AVIRIS spectrum (blue) and ASD field spectrum 
(red). 

 

   
 

Figure 7:  Cuya prospect SWIR AVIRIS mineral map and spectra.  Left, SWIR mineral map (sea 
green=silica+-sericite). Right, comparison of AVIRIS spectrum (green) and ASD field 
spectrum (red). 
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2. Kaolinite Hills Prospect AVIRIS Specifics—AVIRIS mineral mapping identifies this as a 
predominantly kaolinitic area (Figure 8, 9).  Mineralogy is zoned, with hematite/muscovite (sericite) 
in a central low area (though exposed only between up to 50%+ vegetation), surrounded by 
predominately well crystalline kaolinite on flanking low hills.  The AVIRIS muscovite/sericite 
spectrum is shifted to short wavelengths (2.19µm) indicating probable hydrothermal origin.  The 
ASD kaolinite spectrum matches the library kaolinite spectrum very well, though the AVIRIS 
spectrum is somewhat subdued, probably because of spectral mixing (Figure 8).  Calcite outcrops 
occur both north and south of the main kaolinite areas.  Several small hematite/sericite outcrops with 
significant silicification occur along the road just south of the principal calcite outcrops. 
 

    
 
Figure 8:  Kaolinite Hills prospect:  Left, False Color Infrared (CIR) composite image.  Right, SWIR 

AVIRIS mineral map.  (red=kaolinite#1, bright green=kaolinite#2 [poorly crystalline], 
magenta=muscovite #1 [2.19µm], cyan=muscovite #2, Maroon=muscovite #1, sea 
green=silica, dark green=calcite) 

 

    
Figure 9:  Comparison of AVIRIS endmember spectra (left), to ASD Field Spectrum (right). Colors 

are the same as Figure 8. 
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The high spatial resolution (3.5m) AVIRIS data allowed identification and mapping of common 
alteration minerals such as hematite, goethite, kaolinite, dickite, alunite, pyrophyllite, 
muscovite/sericite, montmorillonite, and calcite. Distinguishing between similar minerals such as 
kaolinite and dickite was possible because of the high SNR of the AVIRIS sensor.  The AVIRIS data 
pointed out minerals and mineral assemblages that would not have been readily apparent utilizing 
conventional field mapping methods 
 
Los Menucos, Argentina Hyperion—Hyperion data for the Los Menucos, Argentina, site were first 
acquired on 25 February 2001, close to the 14-15 February AVIRIS acquisition date.  Unfortunately, 
the Hyperion data were predominantly cloudy.  Additionally, Signal-to-Noise Ratios (SNR) 
calculated for this scene were in the 20:1 range, marginal for successful mineral identification and 
mapping (Kruse, 1988). 
 
Several RTZ prospects were mostly clear on the 25 February date.  These data were processed to 
geologic products using the AIG-developed approaches for extraction of mineralogic and geologic 
information.  Several characteristic mineral spectra (silica, kaolinite, muscovite) were extracted from 
the Los Menucos Hyperion data (Figure 10).  Mineral maps were produced and compared to those 
derived from the AVIRIS data above (Figure 10).  Characteristic mineral spectra were extracted 
from the 25 February Hyperion data for silica (Cuya) and kaolinite and muscovite (Kaolinite Hills).  
Comparison of the two datasets shows that Hyperion identifies similar minerals and produces 
grossly similar mineral mapping results as AVIRIS, however, it doesn’t produce the level of detail 
available from the AVIRIS data.  Some minerals are missed, and others are confused 
(dickite/kaolinite).  This is largely the effect of reduced Hyperion signal-to-noise-performance 
compared to the AVIRIS (~20:1 and less for these Hyperion data, compared to >500:1 for AVIRIS) 
(Kruse, 2002).  The Hyperion data are most useful for small-scale reconnaissance mapping and are 
attractive because world-wide acquisitions are possible.  In the Los Menucos case, however, the 
problem was that no cloud-free data were acquired during the southern hemisphere summer – this 
would have maximized the SNR. 
 

     
Figure 10: Left - Hyperion endmember spectra.  Green is silica±mica, red is kaolinite, magenta is 

muscovite.  Center, Hyperion grayscale image with MTMF mineral map overlay:  Green is 
Cuya area with hydrothermal silica±mica signature.  Red is Kaolinite Hills area with 
kaolinite signature.  Magenta shows areas with muscovite signatures.  White areas are clouds 
and dark areas are cloud shadows. Right:  AVIRIS data for the same approximate area.  
Colors are the same as for Hyperion. 
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The 17 June (southern hemisphere winter) Hyperion data spectra, however are sufficiently noisy 
(<15:1) SWIR SNR that extraction of characteristic mineral spectra is extremely difficult.  Large 
area averages are required make any mineral identifications and even then, only the strongest 
features are recognized (Figure 11). 

 
Figure 11:  ACORN Hyperion apparent reflectance spectra for the Cuya site (hydrothermal 

silica±sericite).  Black=25 February 2001, Red=17 June 2001. 
 
The Los Menucos district provides an excellent case history of a complex epithermal gold system initially 
identified using satellite imagery and further mapped and explored using hyperspectral imaging systems.  
The AVIRIS data were very useful in this effort.  Hyperion analysis and comparison to known geology 
derived from AVIRIS data and ancillary ground measurements generally validate in-orbit mineral mapping 
and Hyperion performance, however, clouds and low SNR (“winter” – low solar zenith angle) limit 
effectiveness.  Additional summer season Hyperion data were requested for the Los Menucos sites to allow 
more detailed study and to broaden the scope to other AVIRIS-covered areas.  These data have not been 
acquired as of the date of completion of this project.
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Study Area Results:  Cuprite, Nevada 
Cuprite, Nevada, located approximately 200 km northwest of Las 
Vegas (Figure 12) is a relatively undisturbed acid-sulfate 
hydrothermal system exhibiting well exposed alteration mineralogy 
consisting principally of kaolinite, alunite, and hydrothermal silica.  
The geology and alteration were previously mapped in detail 
(Abrams et al., 1977; Ashley and Abrams, 1980).  Swayze (1997) 
includes a good geologic summary, a generalized geologic map, and 
detailed mineral maps derived from 1990 and 1994 AVIRIS data.  
Cuprite, has been used as a geologic remote sensing test site since 
the early 1980s and many studies have been published (Goetz et al., 
1985; Ashley and Abrams, 1980; Goetz. and Strivastava,, 1985; 
Swayze., 1997; Shipman and Adams, 1987; Kruse et al., 1990; 
Hook, 1990; Swayze et al., 1992; Goetz and Kindel, 1996; Kruse et 
al, 2002a).  
 
This study compares mineral mapping results from AVIRIS data 
acquired 19 June 1997 to Hyperion data collected 1 March 2001.  
Figure 13 shows reference images for the AVIRIS and Hyperion 
data. 
 

                  
 

Figure 13: Reference images showing the AVIRIS (left) and Hyperion (right) coverage of the 
Cuprite, Nevada site.  The site is typically described as consisting of two hydrothermal 
centers (Swayze, 1997).  These can be seen in the images as bright areas to the right and 
left of the road running from NW to SE across the scenes. 

 
 

 
Figure 12:  Location of the 

Cuprite and 
Northern Death 
Valley Sites. 
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Operationally, spectral bands covering the short wave infrared (SWIR) spectral range (2.0 – 2.5 µm 
for AVIRIS and 2.0 – 2.4 µm for Hyperion) were selected and these bands were linearly transformed 
using the MNF transformation.  Figure 14 shows a plot of the MNF eigenvalues for both datasets.  
Higher eigenvalues generally indicate higher information content.  The MNF results indicate that the 
AVIRIS data contain significantly more information than the Hyperion data covering approximately 
the same spatial area and spectral range.   
 

 
Figure 14:  Comparison of AVIRIS and Hyperion eigenvalues plotted versus MNF Band.  Note break 

in slope around 10 for AVIRIS and much lower around 5 for Hyperion. 
 
The actual data dimensionality is usually determined by comparing both the eigenvalue plots and the 
MNF images for each dataset (Figures 14, 15. 16).  In the case of AVIRIS, the MNF analysis 
indicates a dimensionality of approximately 20.  The Hyperion data exhibits dimensionality of 
approximately 6. 
 
 

 
 
Figure 15:  MNF images for the AVIRIS SWIR data.  Images from left to right, MNF band 1, MNF 

band 5, MNF band 10, MNF band 20. 
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Figure 16:  MNF images for the Hyperion SWIR data.  Images from left to right, MNF band 1, MNF 

band 2, MNF band 5, MNF band 10. 
 
The top MNF bands for each data set (20 for AVIRIS, 
6 for Hyperion) were used to determine the most 
likely endmembers using the PPI procedure.  These 
potential endmember spectra were analyzed using the 
n-dimensional scatterplot approach and unique 
endmember signatures extracted and exported to 
ROIs in the image.  Mean spectra were then extracted 
for each ROI from the apparent reflectance data to act 
as endmembers for spectral mapping (Figure 17).  
Note that AVIRIS detected several varieties of alunite 
plus an additional kaolinite-group mineral (dickite) 
that were not detectable using the Hyperion data. 
These endmembers (or a subset in the case of 
AVIRIS) were used for subsequent classification and 
other processing.  Mixture-Tuned-Matched Filtering 
(MTMF) was used to produce image-maps showing 
the distribution and abundance of the selected 
minerals.  (Note:  MNF endmember spectra, not 
reflectance spectra are used in the MTMF  Results 
images for both AVIRIS and Hyperion were produced 
by correcting the Hyperion data to match the AVIRIS 
spatial scale and orientation as described above.  
Selected results were combined as color-coded 
images to show the distribution of the principal 
(spectrally predominant) minerals (Figure 18). 
 
   
 
 

 

Figure 17:  Comparison of selected Hyperion 
endmember spectra (left) and AVIRIS 
endmember spectra (right). Vegetation 
spectra not shown). 
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Figure 18:  MTMF mineral maps for AVIRIS (left) and Hyperion (right) produced using the 
endmember spectra in Figure 17. 

 
 

 
Visual comparison of the two classified datasets shows that Hyperion identifies similar minerals and 
produces similar mineral mapping results to AVIRIS.  In this case, the difference in pixel size is 
generally inconsequential (causing only slight loss of spatial detail in Hyperion results).  It seems 
likely that the lower SNR of the Hyperion data (calculated at approximately 25:1 for this site vs 
>500:1 for AVIRIS) does affect the ability to extract characteristic spectra and identify individual 
minerals.  (See the Hyperion buddingtonite spectrum in Figure 17 above, which does not clearly 
show the characteristic buddingtonite spectral feature shape near 2.11 µm, which is well resolved in 
AVIRIS [Figure 17] and other hyperspectral aircraft data) (Kruse et al., 1990, 2000; Swayze, 1997).  
This spectrum could also, however, be an effect of the pixel size causing greater mixing in the 
Hyperion data for relatively small buddingtonite occurrences.  Additionally, bear in mind that Figure 
18 shows a basic AVIRIS mineral map.  It is possible to extract more detailed mineralogic 
information from the AVIRIS data (Swayze, 1997; Green et al., 2001; Kruse et al., 2001, 2002a;) as 
well as abundance information (Boardman and Kruse, 1994; Boardman et al., 1995, Kruse et al, 
1999).  Determination of abundances for minerals identified by Hyperion is possible, but not 
illustrated here.  Our analysis also indicates that the Cuprite Hyperion data do not allow extraction of 
the same level of detailed mineralogic information as AVIRIS (eg: within-species separation of 
micas and temperature mapping of Alunites) (Swayze, 1997; Swayze et al., 1992).  Actually though, 
Hyperion performs surprisingly well considering the overall SWIR SNR. 
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Cuprite Accuracy Assessment and Error Analysis 
Visual comparison of the Hyperion and AVIRIS MTMF image maps in Figure 18 using the AVIRIS 
data as the “Ground Truth” indicates that in general, using these mapping methods, the two datasets 
produce similar mapping results.  Figure 19 shows a comparison of MTMF results for the minerals 
kaolinite and alunite, presented as binary images covering the data’s overlapping area (white is a 
specific mineral, black is unclassified), and it can be seen that these have similar patterns of 
classified pixels for the selected minerals. 
 

    
 
Figure 19:  Comparison of MTMF mineral mapping results for kaolinite and alunite.  White pixels 

indicate successful classification. 
 
Detailed direct comparison of the mapping results demonstrates, however, that the correspondence is 
not as great as may be thought from visual comparison.  Comparison of the MTMF spectral mapping 
results using a confusion matrix approach shows that many pixels classified using AVIRIS are 
unclassified on Hyperion (up to 60%, but variable by mineral).  These are errors of omission.  This is 
probably explained by the differences in SNR between the two datasets.  Some spectral features are 
simply below the level of detection on the Hyperion data.  The same analysis, but excluding the 
unclassified areas, yields approximately 75% overall agreement of Hyperion to AVIRIS, with a 
Kappa Coefficient of 0.66 (Table 3) (Richards, 1994).  This highlights errors of commission (where 
pixels mapped as one mineral by AVIRIS are mapped as another mineral by Hyperion).  First, some 
pixels unclassified using AVIRIS are misclassified as a specific mineral on Hyperion (around 5% 
commission error).  Additionally, some pixels classified by AVIRIS as specific minerals are 
misclassified as different minerals on Hyperion (~25% commission error).  Specifically, there is 
minor classification error between:  Kaolinite mapped by Hyperion as Muscovite (7%), Kaolinite 
and Silica (4%), Alunite and Silica (4%), Alunite and Muscovite (1%), Muscovite mapped as Silica 
(1%), Muscovite and Calcite (1%),  Silica and Alunite (5%), Silica and Muscovite (2%), Silica and 
Calcite (2%), Buddingtonite and Kaolinite (5%), Calcite and Muscovite (9%), and Calcite and Silica 
(4%).  Moderate errors occur between: Kaolinite mapped by Hyperion as Alunite (15%), Alunite and 
Kaolinite (17%), and Silica and Kaolinite (11%).  The highest errors occur between: Buddingtonite 
mapped by Hyperion as Alunite (59%), and Muscovite mapped by Hyperion as Kaolinite (25%).  
Table 3 summarizes the error relationships between minerals. 
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Table 3:  Confusion Matrix comparing Hyperion MTMF mapping results to AVIRIS “Ground 
Truth” MTMF results. 

 
 AVIRIS Ground Truth (Percent) 

Hyperion Class Kaolinite % Alunite % Muscovite % Silica% Buddingtonite% Calcite % Total 

Kaolinite  74 . 48  16 . 64  25. 32  10. 68   5. 33   3. 54  36 . 44

Alunite  14 . 28  79 . 86   0. 06    5. 39  59. 17   0. 00  31 . 47

Muscovite   7 . 12    0 . 70   72. 77   2. 15   0. 00   9. 45  20 . 76

Silica   3 . 72    2 . 14    1. 00   80. 16   0. 00   6. 69   8 . 73

Buddingtonite   0 . 02    0 . 34    0. 00    0. 00  35. 50   0. 00   0 . 55

Calcite   0 . 39    0 . 32    0. 85    1. 62   0. 00  80. 31   2 . 05

Total 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00 100. 00

  
 
While this comparison serves to highlight the accuracy and overall performance of the Hyperion 
dataset compared to AVIRIS, several other issues may affect the accuracy assessment.  These 
include: 1) the data coverage (spatial extent) of the two datasets – they cover substantially the same 
ground, but not exactly (affects unclassified class), 2) the data pixel size (AVIRIS is 20m, Hyperion 
30m), 3) Image acquisition differences (date/time, atmospheric conditions, SNR), 4) slightly 
different spectral characteristics (2.0 – 2.5 µm for AVIRIS vs 2.0 – 2.4 µm for Hyperion; varying 
band centers and spectral resolution), 5) different image-based endmembers spectra used for MTMF 
(endmember spectra not identical), 6) MTMF threshold consistency and class combining (AVIRIS), 
and 7) Hyperion to AVIRIS image registration accuracy. 
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Study Area Results:  Virginia City, Nevada 
The Comstock mining district, near Virginia City, Nevada, comprising the Comstock, Silver City, 
Occidental and Flowery lodes, is located 24 km SE of Reno, Nevada.  Mineral deposits in the area 
represents a world-class low-sulfidation epithermal Au-Ag mineralization system, with the 
Comstock lode alone producing 312 tons of gold and 72600 tons of silver (Thompson, 1956; Vikre 
1989).  Extensive hydrothermal alteration products of multiple episodes have been recognized in the 
district.  The geology, hydrothermal alteration, Au-Ag mineralization and geochronology of this area 
have been described by numerous workers (Whitebread 1976; Vikre et al. 1988; Vikre 1989 & 1998; 
Henkle et al. 1993), and are briefly summarized as follows. 
 
Mesozoic metasedimentary, metavolcanic and granitic rocks are the oldest lithologies exposed 
mainly in the southern part of the district.  These basement rocks are unconformably overlain by 
thick andesitic lava flows and breccias of the Miocene Alta Formation (20-15 Ma).  The middle 
Miocene Kate Peak Formation (15 to 10 Ma), comprising andesitic to dacitic flows and associated 
dykes and stocks, overlies the Alta Formation with a slight unconformity.  Dikes and stocks of the 
Mount Davidson granodiorite intruded the Alta Formation.  The Mount Davidson granodiorite is 
considered co-magmatic with the Kate Peak intrusions.  Siltstone, sandstone, shale, conglomerate 
and tuff breccia of the Coal Valley Formation overlie the Kate Peak Formation.  In many places, the 
Coal Valley Formation is absent, and the Kate Peak Formation is overlain unconformably by the 
Lousetown Formation.  The Lousetown Formation comprises a series of basalt and basaltic andesite 
flows. 
 
Au-Ag mineralization in the Comstock mining district is hosted mainly in quartz veins and 
stockworks, which contain various amounts of sulfides, calcite, and adularia.  Mineralization of less 
importance occurs in breccias and silicified zones.  The mineralized veins strike predominately north 
±30°, except those related to the Silver City fault which run nearly east-west.  Quartz-sulfides-
calcite-adularia veins are hosted mainly in the Alta Formation.  The age of Au-Ag mineralization in 
the district is 14-12 Ma, coeval with the Kate Peak volcanism.  The ore-bearing volcanic rocks of the 
Alta and part of the Kate Peak Formations are extensively altered.  Episodic hydrothermal alteration 
events resulted in complex and often overprinted spatial distributions of various alteration 
assemblages.  These alteration assemblages are broadly classified into advanced argillic, argillic, 
propylitic, phyllic (sericitic) and silicification. 
 
Intense and pervasive advanced argillic alteration resulted in quartz-alunite-clay assemblages, 
forming extensive bleached zones near Virginia City, Gold Hill, Cedar Hill, and Flowery.  Alteration 
is commonly zoned from a quartz-alunite core, through an inner kaolin-rich clay envelope (up to a 
few meters thick) and an outer illite-smectite zone, to a peripheral chlorite-smectite zone.  Based on 
radio isotopic dating and sulfur isotope compositions of alunite and observed crosscutting relations, 
at least part of the bleached zones were formed prior to Au-Ag mineralization in a hypogene acid 
sulfate alteration event probably at 17-14 Ma.  Later acid sulfate alteration (12 to 9 Ma) was 
identified in the bleached rocks close to the north end of the mapped area, and becomes predominant 
further north (out of the mapped area) in the western Virginia Range. 
 
Airborne hyperspectral reflectance data (AVIRIS) have previously proved to be very useful in 
identifying and mapping hydrothermal alteration zones at Virginia City (Figure 20).  As part of 
ARIES-1 feasibility studies, simulations of ARIES-1 mineral mapping capabilities were carried out 
in the Comstock mining district by AIG and CSIRO using AVIRIS data (Boardman and Huntington, 
1996).  The simulations were focused on determining areal variations in the relative abundances of 
major alteration minerals, in order to clarify the details of the alteration zoning.  Although the 
bleached zones of intense alunite-kaolin alteration at Virginia City were previously mapped 
(Whitebread 1976), the areal distributions of other alteration minerals (e.g. white micas and chlorite) 
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and, in particular, their abundance variations at the district scale had not been determined prior to the 
AVIRIS work.   
 
Another key result of the Virginia City AVIRIS work was 
the verification and mapping of subtle differences in the 
position of diagnostic absorption features for white 
micas.  Subtle compositional changes of these alteration 
minerals were used to provide valuable information on 
the hydrothermal alteration processes at Virginia City. 
The white mica identified as having short Al-OH 
absorption wavelength is located dominantly in the 
bleached rocks of the Alta and Kate Peak Formations.  
This white mica occurs mainly along or east of the 
Comstock and Silver City faults (Figure 20).  The short 
Al-OH wavelength white mica commonly coexists with 
kaolin and alunite, and so belongs to the advanced argillic 
assemblage.  The white mica with long Al-OH absorption 
wavelengths occurs mainly in the unbleached Alta and 
Kate Formations west of the Comstock and Silver City 
faults, and in the Mesozoic rocks in the southern part of 
the district (Figure 20).  This long Al-OH wavelength 
white mica forms part of the propylitic or phyllic 
assemblages.  The medium Al-OH wavelength white 
mica was mapped out mainly in the central part of the 
district, close to the Comstock fault between Virginia 
City and Gold Hill, and around the Flowery mine (Figure 
20).  Spatially, this white mica tends to be associated with 
the short rather than the long Al-OH wavelength types. 
 
Hyperion data were acquired for the Virginia City site on 
several dates (see Table 2).  The SWIR bands (2.012 – 
2.4 µm) for the 2 May 2001 scene were used by CSIRO 
to assess Hyperion’s mineral mapping capabilities.  
Endmembers extracted are shown in Figure 21 and 
mapped in Figure 22.  Note that alunite was not mapped 
using Hyperion.  This is surprising, as it is well mapped 
by AVIRIS. The Hyperion kaolinite mapping appears to 
match AVIRIS quite well, however, no dickite sub-
species was found.  Hyperion’s capability to map the full 
range of illite / mica species is somewhat limited 
compared to AVIRIS.  Only 2 varieties were located, 
with more limited wavelength ranges than previously 
mapped using AVIRIS.  Note thall Mg(OH) minerals (ie 
those with >2300 nm absorptions), such as chlorite, 
amphibole, epidote, carbonates) are very hard to map 
reliably using Hyperion, and locations only vaguely 
match AVIRIS results. 
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Figure 20:  AVIRIS mineral mapping 

results for the Virginia City 
area, Nevada. 
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The AVIRIS/Hyperion comparisons for the Virginia City site show that this Hyperion dataset is at 
the margin of operational utility.  It appears that lower albedo, vegetated, heterogeneous, 
mountainous, mixed terrain leads to particularly low SNR for this scene.  Consequently manual 
mapping methods are difficult (some minerals mapped, others missed – the 2.3 µm MgOH mineral 
detection severely hampered) and automatic mineral mapping methods mostly fail.  While mapping 
success is evident in near-100% exposed, high albedo areas with little mixing and little vegetation, 
our conclusion is that the overall effort required for Hyperion datasets of this quality is probably too 
much for most operational users. 

Virginia City & 
Comstock Lode

Silver City

Geiger Grade

Flowery Mining District

Occidental Lode

   
Figure 22.  Left - Hyperion color IR image for the Virginia City site with key sites marked.  Right – 

Hyperion mineral map showing distribution of minerals identified in Figure 21.  
Yellow=cultural, red=chlorite/carbonate/amphibole, green=kaolinite, magenta=short λ 
muscovite, cyan=long λ muscovite, sea green=vegetation. 
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Study Area Results:  Steamboat Springs, Nevada 
The Steamboat Springs hydrothermal system is described as a present-day equivalent of epithermal 
gold-silver deposits (White 1955; White 1967).  This hydrothermal system, located just south of 
Reno, Nevada (Figure 23) is associated with four rhyolite domes, and thermal activity has probably 
been continuous for at least the past 0.1 m.y (Silberman et al., 1979).  Numerous wells have been 
drilled at Steamboat for geothermal energy and to obtain hot water for local resort facilities.  Wells 
range from 218 - 558 m with maximum measured temperature of 186 degrees C (White 1968; White 
1981).  The principal surface mineralogy reported at Steamboat consists of chalcedonic sinter 
deposits (Figures 23 and 24).  Dark siliceous muds are also being deposited in the active springs and 
acid-leached opaline residues, kaolinite, and alunite occur in solfatarically altered granodiorite and 
basaltic andesite in the western part of the area (Figures 1 and 2) (Sigvaldason and White, 1962; 
White et al., 1964; Schoen and White 1967; Schoen et al., 1974).  Significant concentrations of 
precious metals and related pathfinder elements occur in the Steamboat Springs sinter deposits, as 
chemical sediments in spring vents, and as veins at depth (White 1981).  Gold was detected at the 1-
2 ppm level along with anomalous Ag and As concentrations in analysis of samples from several 
drill holes, and small amounts of Hg has been mined from the Mercury mine at Steamboat (White et 
al., 1992).  Deep drilling at Steamboat shows vein and alteration patterns that are indistinguishable 
from those of many epithermal ore deposits, containing adularia, illite, montmorillonite, and 
chlorite-group minerals as well as kaolinite, chalcedony, calcite, and quartz.  Both stibnite and 
cinnabar are present near the surface, however, ore-grade concentrations of metals appear to be 
absent both in the near surface deposits and in the veins at depth. 

 
 

Figure 23: Location and Geology of Steamboat Springs, Nevada (from White et al., 1992) 
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Figure 24:  Ground-level photographs at Steamboat Springs, Nevada.  Left photo shows silica sinter 
surface.  Right photo shows acid-sulfate area. 

 
Steamboat Springs AVIRIS Results 
AVIRIS data were acquired during July 1995 for the Steamboat Springs area as part of a 
reimbursable flight coordinated by AIG (Kruse et al., 1996a,b) and during October 1998 as part of 
the JPL AVIRIS low altitude test program (Chrien et al, 1999).  AVIRIS data from both flights were 
calibrated to apparent reflectance using the ATREM method (Gao. and Goetz 1990; CSES, 1999).  
Data were then analyzed using standardized procedures developed by AIG (Kruse et al., 1996a,b).  
Figure 25 shows a color IR image and mineral map for the 1995 data (~20 meter pixels).  Figure 26 
shows the endmember spectra extracted from the 1995 and 1998 AVIRIS data. Figure 27 shows 
1998 AVIRIS mineral mapping results. 
 

    
 
Figure 25.  Steamboat Springs, NV, 1995 AVIRIS data (20m spatial resolution). Left – False color 

IR image. Right – AVIRIS mineral map, red=kaolinite, yellow=alunite, and 
green=hydrothermal silica. 
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Figure 26:  Left – Steamboat, NV, 1995 AVIRIS endmembers.  Center - Steamboat, Nevada, 1998 

AVIRIS Endmembers.  Right - Comparison of active (low terrace) and inactive (high 
terrace) 1998 AVIRIS sinter spectra to library spectra of opal and chalcedony. 

 
 
 
 

    
 
Figure 27:  Steamboat Springs, NV, 1998 AVIRIS data. Left – False color IR image. Right – AVIRIS 

mineral map, red=kaolinite, yellow=alunite, and green=hydrothermal silica. 
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Both the 1995 and 1998 AVIRIS data show similar endmember mineralogies and spatial 
distributions.  Most differences appear to be caused by the differences in spatial coverage caused by 
different pixel sizes.  The predominant mineralogy at Steamboat Springs is the hydrothermal silica, 
exposed in silicious sinters.  Peripheral to this are exposures of alunite and kaolinite.  
Montmorillonite is present, though not abundant.  Both green and dry vegetation dominate outside 
the hot springs areas.  The mapped silica distributions are apparently associated with low-lying areas 
(topographic lows), the “basin” and the mapped acid-sulfate areas are associated with the fringing 
hills and ridges.  This seems to support the idea that the distribution of mineralogy at Steamboat 
Springs was (and still is) controlled by the current topography. 
 
Active and inactive sinters at Steamboat Springs have been described as opal and chalcedony 
respectively (White et al., 1992).  Spectral matching using Spectral Feature Fitting, a least-squares 
band matching method (Kruse, unpublished data), however, indicates that AVIRIS spectra from both 
locations appear to best match an opal library spectrum.  Figure 26 (right) shows a comparison of 
1998 AVIRIS spectra from the active terraces (Low Terrace) and the inactive terraces (High 
Terrace), compared to laboratory reflectance spectra of opal and chalcedony from the USGS Denver 
Spectral Library (Clark et al., 1993).  At first glance, the opal and chalcedony spectra appear very 
similar, however, slight shape differences exist between the two species.  When compared with the 
AVIRIS spectra, these cause preferred RMS fits to the opal laboratory spectrum. 
 
N-Dimensional scatterplotting of only the silica endmember spectra from the 1998 AVIRIS data was 
used in an attempt to break the silica sinter down into finer mineralogical detail.  Several similar 
hydrothermal silica spectra were extracted from the data (Figure 28).  Mixture-Tuned-Matched-
Filtering was used to map the spatial distributions of materials having these subtle spectral 
differences.  At least three of these have unique spatial distributions, as shown in Figure 28.  Further 
field mapping and spectral measurements are required before the nature of these differences can be 
confirmed. 

   
 
Figure 28:  Spectral plots and Matched Filter images showing subtle spectral differences in 1998 

AVIRIS data of the silica sinter at Steamboat Springs, Nevada.  Plot shows endmember 
spectra.  Three MF images show best matches to three distinct spatial occurrences, 
EM#1 (left), EM#2 (center), and EM#3 (right).  Bright pixels in MF images represent 
best matches. 
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Steamboat Springs, Hyperion Results 
Hyperion data acquired 22 August, 2001 were used for this analysis.  The data were processed using 
the standard AIG/CSIRO methods, correction to reflectance; MNF, PPI, n-d visualization, spectral 
identification, MTMF mapping.  SWIR signal-to-noise was calculated as approximately 30:1 using 
the mean/standard deviation method.  Endmembers corresponding to alunite, kaolinite, and two 
varieties of silica were extracted from the data (Figure 29).  Both green and dry vegetation were also 
identified and mapped, but are not shown.  Spectral variability was observed within active and 
inactive sinter terraces using both AVIRIS and Hyperion data and may correspond to the difference 
between Opal versus Chalcedony. This, however, remains to be confirmed. 
 

   
 
Figure 29:  Steamboat Springs, NV, Hyperion endmember spectra (left) and MTMF mineral 

mapping results (right).  Red=alunite, yellow=kaolinite, green=silica #1, sea 
green=silica #2. 

 
The Steamboat Springs case history validates Hyperion data for characterizing active and fossil hot 
springs systems and acts as another demonstration the viability of satellite hyperspectral data for 
mineral mapping.  At the reconnaissance level, 1995 and 1998 AVIRIS and Hyperion data produced 
similar results.  The major minerals were detected and mapped.  The AVIRIS and Hyperion data 
allow detailed mapping of the hot-springs-associated alteration mineralogy, including the 
distribution of the siliceous sinter based on an absorption feature near 2.25 µm.  At Steamboat 
Springs, silica was mapped in terrace-like spatial patterns associated with known hydrothermal 
activity as well as on inactive terraces.  AVIRIS data confirms Steamboat Springs as principally an 
alkaline hot-springs environment.  Reported distributions of opal on active terraces, and chalcedony 
on inactive terraces, however, was not confirmed.  The AVIRIS data indicate that all of the exposed 
silica is opaline.  The 1998 low-altitude AVIRIS, with 2.4 meter spatial resolution, not surprisingly 
allows mapping of greater detail at the “deposit” level - “improved photo-interpretation” of spectral 
results.  Spectral variability was observed and mapped within the active sinter terraces utilizing the 
1998 AVIRIS data and the Hyperion data, however, the physical nature/cause is presently not 
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known.  An association was noted at Steamboat Springs between the hot-springs mineralogy and the 
topography, with the silica sinters located principally in the basins, and the acid-sulfate minerals 
along positive topographic features (ridges and hilltops) along the periphery of the basin.  Continued 
studies of a variety of hot springs using hyperspectral data will allow improved understanding of the 
link between active hot springs and the expression of fossil hot springs in the geologic record.  
Selected systems will be used to develop an operational exploration strategy utilizing integrated 
remote sensing for discovery and characterization of epithermal mineral deposits. 
 
Study Area Results:  Oatman, Arizona 
The Oatman Mining District lies approximately 160 km southeast of Las Vegas, Nevada, mid-way 
between Needles, California and Kingman, Arizona.  The district is about 21 miles long and 7 miles 
wide and is situated within the Tertiary volcanics of the Black Mountains.  Elevation ranges from 
670 to 820 meters above sea level. 
 
Gold was first discovered at Oatman in 1863 in the Moss Vein and subsequent finds in other 
locations (Gold Road Vein, tom Reid Vein) led to the development of a town of 10,000 at Oatman 
after about 1916.  Production ceased in the district in 1942 after producing some 2.2 million ounces 
of gold and 0.8 million ounces of silver.  A total of 3.8 million tons of ore averaging 0.58 ounces/ton 
gold and 0.17 ounces/ton silver were extracted from eight orebodies and a number of lesser deposits 
between 1897 and 1942. 
 
The regional geology consists of a thick sequence of Tertiary sub-alkaline, intermediate, and silicic 
volcanic rocks which have been intruded by two epizonal plutons.  The Black Mountains are a 
typical basin and Range, fault-bounded, Teriary volcanic sequence composed of trachyte, latite, 
rhyolite, and basalt (Thorson, 1971; Clifton et al., 1980).  Oatman lies at the center of a volcanic 
complex which contains at least one resurgent caldera.  The orebodies are typically low sulpher, 
epithermal, quartz-calcite +/- adularia lode deposits.  Ore deposition has occurred in dilettante zones 
on faults which radiate from a common point within the complex.  The Tertiary volcanics rest on a 
Precambrian basemen of schists, gneiss, and granite and are intrude by both the Times Porphyry, a 
granophyre laccolith, and an epizonal quartz monzonite pluton, the Moss Pophyry. 
 
An intense and pervasive argillic alteration is evident in the center of the study area.  Studies by 
Clifton et al. (1980) indicate that the argillic alteration is centered around a previously unmapped 
rhyolite center.  This event was most likely responsible for the bold mineralization in the district.  
There are four distinct alteration assemblages at Oatman which may be directly or indirectly related 
to mineralization.  These are: 
 
1. pervasive argillic alteration that is characterized by the formation of alunite and sericite 

(muscovite) and is present in the two intrusions and intruded formations. 
 
2. spatially restricted, phyllic wall rock alteration which is characterized by the presence of illite 

and has been mapped in the Tertiary volcanics.  This alteration extends above the orebodies to 
the surface in the central district and may coalesce with zones from adjacent veins to form a 
wider, potentially more visible surface signature; 

 
3. propylitic alteration which introduces chlorite, calcite, and epidote into the wall rock; 
 
4. silicification of the wall rock characterized by the introduction of quartz along microfractures. 
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Oatman, AZ, AVIRIS Results 
The above assemblages provide an excellent reference against which to compare and judge the 
Hyperion mineralogical mapping capabilities.  Extensive hyperspectral mapping has been done at 
Oatman using AVIRIS data, and ARIES simulations have been conducted at the same 30 m pixel 
size that Hyperion provides (Figures 30, 31, 32, 33).  There is a tremendous amount of ground truth 
available as well as map-referenced mineral abundance products derived from the AVIRIS and 
ARIES simulations.  Some of the rocks at Oatman present a challenge to Hyperion for mineral 
detection and mapping.  The propylitic alteration zone described above typically occurs in dark 
rocks and provides a realistic test of the SNR performance with respect to mineral identification and 
mapping using Hyperion. 
 

    
 
Figure 30:  ARIES simulated data for Oatman Arizona.  Left, true color composite; right, mineral 

mapping result for Alunite, Kaolinite, Muscovite 2 (RGB).  AVIRIS endmember spectra 
are shown with same color coding.  Excellent detection and mapping of alunite, 
kaolinite and dickite and their in-field mixtures (Note the non-primary colors). 



 36

   
 
Figure 31:  AVIRIS 2000 results – Carbonates vs MgOH. Left, mineral map with calcite, dolomite, 

and chlorite/epidote as R,G,B.  Note excellent detection and mapping of calcite, 
dolomite and chlorite/epidote, despite subtle distinctions and sub-pixel exposures.  
Right, image-derived AVIRIS endmembers 

 
 
 

    
 
Figure 32:  AVIRIS 2000 results – Mica variability (AL substitution).  Full solid solution series of 

muscovite detected, mapped and field/lab validated w/ CSIRO.  Left, mineral map 
showing distribution of mica with specific wavelength centers.  Change of colors from 
red to blue corresponds with shift of main mica absorption band center near 2.2 µm to 
shorter wavelengths ( an ~12 nm shift associated with cation substitution of Fe and Al).  
Right – AVIRIS mica endmember spectra using same color-coding. 
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Oatman, AZ, Hyperion Results 
At Oatman, using data acquired 6 May 2001, Hyperion successfully maps basic mineralogy 
(kaolinite, alunite, chlorite and muscovites) (Figure 33)).  Hyperion also detects and maps mineral 
subspecies (cation substitution) of muscovites (Figure 34).  We were unable, however, to fully 
separate calcite from chlorite and did not detect dolomite or dickite (SNR issues) (Figure 35).  
 
Comparison of AVIRIS MNF bands with Hyperion MNF bands reveals the main difference between 
the data – that of SNR performance.  The Oatman AVIRIS data show a dimensionality of greater 
than 15, whereas the Hyperion data exhibit dimensionality on the order of 6.  This can be seen in the 
images shown in Figure 36, where Hyperion data are dominated by noise beyond approximately 6 
MNF bands.  Hyperion image uniformity (striping) and relatively low SNR limit the data utility. 
 

    
 
Figure 33:  Hyperion combined mineral mapping.  Left, Hyperion endmember spectra - Alunite = 

red, Kaolinite= green, chlorite/epidote = yellow, calcite = blue, lw muscovite =cyan, sw 
muscovite = magenta.  Right, Hyperion mineral map – Note slightly different color 
scheme.  Kaolinite = red, alunite = green, chlorite/epidote = yellow, calcite = cyan, lw 
muscovite =magenta, sw muscovite = maroon.  Comparison to AVIRIS indicates good 
mapping of alunite, kaolinite, chlorite/epidote and muscovites, but poor discrimination 
of calcite vs chlorite/epidote along with moderate separation of muscovite subspecies. 
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Figure 34:  Left, AVIRIS RGB image showing kaolinite/alunite/dickite abundances. Right - Hyperion 

red=kaolinite, green=alunite, magenta/maroon = muscovite.  Hyeperion fails to find 
dickite but maps alunite and kaolinite. 

 
 

    
 
Figure 35:  Left, AVIRIS RGB image showing calcite/dolomite/chlorite abundances.  Right, 

Hyperion yellow=chlorite, cyan=calcite.  Hyperion fails to find dolomite, maps chlorite 
well, but tends to confuse calcite and chlorite 
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Figure 36:  Comparison of AVIRIS and Hyperion MNF images. Top- RGB images of AVIRIS MNF 

bands 1, 2, 3; MNF bands 7, 8, 9; and MNF bands 12, 13, 14.  Bottom – RGB images of 
Hyperion MNF bands 1, 2, 3; MNF bands 4, 5, 6; and MNF bands 7, 8, 9. 

 
In summary, at Oatman AZ, hyperion performs about as expected, similar to AVIRIS during its 1991 
collection season.  Similar spectral endmembers were extracted from the Hyperion data as for 
AVIRIS and HyMap, but possibly only because of a priori knowledge.  Hyperion successfully maps 
performs basic mineralogical mapping of kaolinite, alunite, chlorite and muscovites (not possible 
with LANDSAT-class data).  Hyperion was unable to fully separate calcite from chlorite and did not 
detect dolomite or dickite (SNR issues).  Several sub-species of muscovites are detected and mapped 
with Hyperion, however, SNR/striping limit coherent mapping.  Hyperion image uniformity and 
relatively low SNR limit the data utility. 
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Study Area Results:  Northern Death Valley, California/Nevada 
The northern Grapevine Mountains (NGM) site, located in south-central Nevada (see Figure 12), 
was designated part of a U.S. Geological Survey Wilderness Study Area in 1982.  It is now part of 
Death Valley National Park.  The USGS was charged with evaluating the economic mineral 
potential of the area by characterizing the surface geology, alteration, geologic structure, and 
existing prospects and claims.  Remote sensing technology available at the time (Landsat MSS and 
TM data) was also used as part of this evaluation.  Based on alteration mineralogy at the site, an 
airborne survey using Geophysical and Environmental Research’s (GER’s) 64 channel airborne 
spectral profiler was also flown.  Results from the remote sensing analysis, field mapping and field 
spectral measurements, laboratory analyses, and ancillary data led to removal of the site from 
consideration as a WSA in 1984 (Wrucke et al., 1984). 
 
Because the site was relatively well understood and mapped, repeated overflights of the NGM site 
with a variety of remote sensing instruments were arranged from 1984 through 1998 to evaluate 
remote sensing technology for resource assessment and to develop advanced analysis methodologies.  
Remote Sensing data available for the NGM site include Landsat MSS and TM, Thermal Infrared 
Multispectral Scanner (TIMS), JPL Airborne Synthetic Aperture Radar (AIRSAR) and SIR-C.  
Imaging spectrometer (hyperspectral) data flown for the NGM site include GER Spectral Profiler 
(1982), Airborne Imaging Spectrometer (AIS) (1984 - 1986), Airborne Visible/Infrared Imaging 
Spectrometer (AVIRIS) (1987, 1989, 1992, 1994, 1995), and Low Altitude AVIRIS (1998). 
 
The site has been studied in detail using field mapping and the remote sensing data sets described 
above (Kruse, 1988, Kruse et al., 1993a; Kruse et al., 1999).  PreCambrian bedrock in the NGM area 
consists of limestones, dolomites, sandstones and their contact metamorphic equivalents.  Mesozoic 
plutonic rocks are mapped primarily as granitic-composition and some age-dates are available 
(Albers and Stewart, 1972).  Mesozoic units mapped in the field include quartz syenite, a quartz 
monzonite porphyry stock, quartz monzonite dikes, and a granite intrusion (Kruse, 1987).  These 
rocks are cut by narrow north-trending mineralized shear zones containing sericite (fine grained 
muscovite or illite) and iron oxide minerals (Wrucke et al., 1984; Kruse, 1987).  Slightly broader 
northwest-trending zones of disseminated quartz, pyrite, sericite, chalcopyrite, and fluorite 
mineralization (QSP alteration) ± goethite occur in the quartz monzonite porphyry.  This type of 
alteration is spatially associated with fine-grained quartz monzonite dikes (Kruse, 1987).  There are 
several small areas of quartz stockwork (silica flooding of the rocks) exposed at the surface in the 
center of the area.  Skarn, composed mainly of brown andradite garnet intergrown with calcite, 
epidote, and tremolite, occurs around the perimeter of the quartz monzonite stock in Precambrian 
rocks.  The NGM area has many of the characteristics common to porphyry copper deposits, 
however, there has not been any secondary (supergene) enrichment, and thus economic 
concentrations of ore do not occur.  Complexly faulted, Tertiary volcanic rocks related to the Timber 
Mountain Caldera in southern Nevada are abundant around the southern periphery of the study area 
and are overlain by volcaniclastic sedimentary rocks interbedded with rhyolite and basalt (Wrucke et 
al., 1984).  Quaternary deposits include Holocene and Pleistocene fanglomerates, pediment gravels, 
and alluvium; these have been mapped in reconnaissance (Moring, 1986) but no linked 
bedrock/surficial geology studies have been completed. 
 
This site represents an ideal area for evaluation, validation, and demonstration of the Hyperion 
hyperspectral sensor.  The geology is complex, but relatively well understood, the PI is very familiar 
with the site, and detailed field and remote sensing results are available and published (Kruse, 1988; 
Kruse et al., 1993a; Kruse et al., 1999).  The Hyperion instrument was compared against detailed 
geologic maps, other multispectral and hyperspectral sensors, and numerous field and laboratory 
spectral measurements. 
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Northern Death Valley AVIRIS/Hyperion Mineral Mapping 
For the purposes of this study, AVIRIS data collected 9 June 2000 (f000609t01p03_r04) were 
compared to Hyperion data collected July 23 2001 (EO12001204_20AD20AC_r1_PF1_01.L1_A).  
The Hyperion SNR was calculated using the Mean/Standard Deviation method for Racetrack Playa 
at ~60:1 (Best Hyperion Data Set Received at AIG).  A spectral subset of bands covering the short 
wave infrared (SWIR) spectral range (2.0 – 2.5 µm for AVIRIS and 2.0 – 2.4 µm for Hyperion) was 
selected and these bands were linearly transformed using the MNF transformation.  A plot of 
eigenvalues versus MNF band number (not shown) shows a sharp falloff in eigenvalue magnitude 
between 1 and 20 for AVIRIS and between 1 and 10 for Hyperion. Because higher eigenvalues 
generally indicate higher information content, this indicates that the AVIRIS data contain 
significantly more information.  The actual data dimensionality is usually determined by comparing 
both the eigenvalue plots and the MNF images for each dataset (Figures 37 and 38).  In the case of 
AVIRIS, the MNF analysis indicates a dimensionality of approximately 20.  The Hyperion data 
exhibits dimensionality of approximately 8. 
 

          

 
Figure 37:  MNF images for the northern Death Valley AVIRIS SWIR data.  Images from left to right, 

MNF band 1, MNF band 5, MNF band 8, MNF band 10, MNF band 20. 
 
 

             

Figure 3:.  MNF images for the northern Death Valley Hyperion SWIR data.  Images from left to 
right, MNF band 1, MNF band 5, MNF band 8, MNF band 10, MNF band 20. 

 
The top MNF bands for each data set (20 for AVIRIS, 6 for Hyperion), which contain most of the 
spectral information (Green et al., 1988), were used to determine the most likely endmembers using 
the PPI procedure.  These potential endmember spectra were loaded into an n-dimensional 
scatterplot and rotated in real time on the computer screen until “points” or extremities on the 
scatterplot were exposed (Boardman, 1993).  These projections were “painted” using region-of-
interest (ROI) definition procedures and then rotated again in 3 or more dimensions (3 or more MNF 
bands) to determine if their signatures were unique in the MNF data.  Once a set of unique pixels 
were defined, then each separate projection on the scatterplot (corresponding to a pure endmember) 
was exported to a ROI in the image.  Mean spectra were then extracted for each ROI from the 
apparent reflectance data to act as endmembers for spectral mapping (Figure 39).  These 
endmembers were used for subsequent classification and other processing.  Mixture-Tuned-Matched 
Filtering (MTMF), a spectral matching method  (Boardman, 1998), was used to produce image-maps 
showing the distribution and abundance of selected minerals.  (Note:  MNF endmember spectra, not 
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reflectance spectra are used in the MTMF).   The results are generally presented as gray-scale 
images (not shown) with values from 0 to 1.0, which provide a means of estimating mineral 
abundance.  Brighter pixels in the images represent higher mineral abundances.   Results images for 
both AVIRIS and Hyperion were produced by correcting the Hyperion data to match the AVIRIS 
spatial scale and orientation as described above.  Selected results were combined as color-coded 
images to show the distribution of the principal (spectrally predominant) minerals (Figures 40 and 
41).  Minerals identified using the Hyperion data by comparison to a spectral library and previously 
verified by X-Ray Diffraction include calcite, dolomite, muscovite (3 varieties), silica, and zeolite 
(Kruse, 1988, 2003). 
 

   
 
Figure 39:  Endmember spectra extracted from the AVIRIS data (left) and Hyperion data (right). 
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Figure 40:  MTMF mineral maps for AVIRIS (left) and Hyperion (right) produced for the 

endmembers in Figure 4 for the northern Death Valley, California and Nevada site.  
Colored pixels show the spectrally predominant mineral at concentrations greater than 
10%. 

 

    

 
Figure 41:  MTMF mineral maps for AVIRIS (left) and Hyperion (right) produced for a subset 

(combined) of the endmembers in Figure 4 for the northern Death Valley, California 
and Nevada site.  Colored pixels show the spectrally predominant mineral group at 
concentrations greater than 10%. 
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Northern Death Valley Accuracy Assessment 
Visual comparison of the detailed mapping results for the northern Death Valley site shows that 
Hyperion identifies similar minerals to AVIRIS and that there is generally good correspondence 
between the AVIRIS and Hyperion mapping.  It is also possible to extract abundance information 
from both the AVIRIS and Hyperion data (Boardman and Kruse, 1994; Boardman et al., 1995, 
Kruse et al, 1999), but this is not illustrated here.  Confusion matrix results comparing the AVIRIS 
and Hyperion mapping results, excluding the unclassified pixels show overall accuracy of 
approximately 76% for the Hyperion mapping as compared to AVIRIS, with a Kappa Coefficient of 
0.71.  Table 4 indicates that there is, however, considerable difficulty separating similar mineralogy.  
In this case, detecting and mapping the three muscovite varieties appears to be near the detection 
limit at the calculated 60:1 SNR of the Hyperion data.  Grouping similar minerals together (calcite 
with dolomite, and combining the three muscovites) results in dramatic identification and mapping 
improvements (Figure 41, Table 5). 
 
 
Table 4:  Confusion Matrix comparing Hyperion northern Death Valley MTMF mineral mapping 

results to AVIRIS “Ground Truth” MTMF detailed mineral mapping results.  Excludes 
unclassified pixels.  Overall Accuracy is 76%.  Kappa coefficient is 0.71 

 
 AVIRIS Ground Truth (Percent) 

Hyperion  
Class 

Calcite Dolomite Muscovite #1 Muscovite #2 Muscovite #3 Silica Zeolite Total 

Calcite 82.66 16.75 0.00 0.31 1.11 0.46 0.21 11.46

Dolomite 15.73 83.01 0.00 0.00 0.00 0.09 0.10 9.74

Muscovite 0.10 0.00 85.62 15.04 41.13 1.37 0.00 33.07

Muscovite 0.00 0.00 2.11 76.43 11.49 0.09 0.00 8.62

Muscovite 0.10 0.00 8.33 4.50 35.65 2.46 0.72 10.14

Silica 0.20 0.24 3.81 3.72 6.36 89.70 6.00 14.76

Zeolite 1.21 0.00 0.13 0.00 4.26 5.83 92.96 12.21

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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Table 5:  Confusion Matrix comparing Hyperion northern Death Valley MTMF mapping results to 
AVIRIS “Ground Truth” MTMF basic (Combined Minerals) mapping results.  Excludes 
unclassified pixels.  Overall Accuracy is 94%.  Kappa coefficient is 0.91. 

 
 AVIRIS Ground Truth (Percent) 

Hyperion Class Carbonate Muscovite Silica  Zeolite Total 

Carbonate 99.01 0.44 0.55 0.31 21.19

Muscovite 0.11 93.23 3.92 0.72 51.83

Silica 0.22 4.72 89.70 6.00 14.76

Zeolite 0.66 1.61 5.83 92.96 12.21

Total 100.00 100.00 100.00 100.00 100.00

 
Confusion Matrix comparisons between AVIRIS and Hyperion show: 

•  Slight problem mapping unclassified pixels on AVIRIS as minerals on Hyperion (~1-5%) 
•  Larger problem missing pixels shown as specific mineralogy on AVIRIS and mapping them 

as unclassified on Hyperion (30 - 90% depending on mineral) (fine distinctions such as 3 
muscovites have high errors illustrating that SNR makes ID and mapping problematic for 
some minerals) 

•  When all NDV endmembers are considered and only the classified pixels are compared, 
Hyperion matches AVIRIS to approximately the 80 - 90% level with lower matches for 
problem minerals 

•  Grouping Hyperion classified minerals into more general groups (eg: muscovite, carbonate) 
results in significant improvement with Hyperion match to AVIRIS at approximately >90% 
level.  Carbonates match at +99%. 

•  Hyperion SWIR SNR at the NGM, NV, site of approximately 60:1 allows improved mineral 
identification and within-species variability mapping compared to Hyperion data sets with 
lower SNR 

 
The figures and tables above demonstrate Hyperion’s utility for mapping specific earth-surface 
materials (minerals) using AIG’s standardized hyperspectral analysis methods.  In this case, the data 
allow separation and identification of several very similar spectral signatures based on absorption 
features near 2.2 – 2.3 µm.  Comparison to airborne hyperspectral data indicates that Hyperion 
performs with approximately 80-95% accuracy with respect to mineral maps produced using the 
same approach and verified utilizing field mapping and ground-based spectral measurements (Kruse 
et al., 2002a, 2003). 
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4.0 SUMMARY OF KEY RESEARCH RESULTS 
The following presents the key results from the main EO-1 Hyperion geologic study sites used for 
this analysis/research. 
 

•  Los Menucos Argentina:  represents a case where Hyperion data collected during the winter 
season (low solar zenith angle) lack sufficient SNR (<40:1 VNIR, <15:1 SWIR) for accurate 
mineral mapping. 

 
•  Cuprite, NV:  an “Early” Hyperion acquisition for the northern hemisphere (a winter scene).  

SWIR SNR is approximately 25:1. Hyperion analysis and comparison to known geology 
derived from AVIRIS data and ancillary ground measurements validate Hyperion basic 
mineral mapping. Some confusion occurs between similar minerals. 

 
•  Virginia City, NV:  General mineral mapping using Hyperion possible, however, some 

minerals missed, and similar minerals confused. SWIR SNR is particularly low 
(approximately 20:1) principally because of lower albedo, vegetated, heterogeneous, 
mountainous, mixed terrain. Limited separation of cation-substituted micas is possible.  
Particular problems mapping 2.3 µm minerals such as chlorite, epidote, amphiboles, 
carbonates. 

 
•  Oatman, AZ: Hyperion successfully maps basic mineral groups (kaolinite, alunite, chlorite 

and muscovites) and detects and maps subspecies (cation substitution) of muscovites.  
Hyperion was unable to fully separate calcite from chlorite and did not detect dolomite or 
dickite (probable SNR issues). 

 
•  N. Grapevine Mtns, NV (northern Death Valley site) is a “best case” Hyperion acquisition 

from the N. Hemisphere Summer (July 2001). SWIR SNR is approximately 60:1. The higher 
SNR allows improved mineral identification and within-species variability mapping 
compared to Hyperion data sets with lower SNR. 

 
Other key results of this research include: 

•  Validation of methods developed for analysis of airborne hyperspectral data for analysis of 
spaceborne HSI data (“hands-off” analysis using model-based atmospheric correction and n-
Dimensional scatterplot approach) 

•  Demonstration and validation of HSI mineral mapping from space for a variety of geologic 
environments 

o Basic Mineral Mapping performed for minerals with high spectral contrast @ >90% 
Accuracy for pixels mapped as specific mineral 

o Basic Mineral Mapping for similar minerals (eg: MgOH vs Carbonate minerals) but 
some problems at lower SNR 

o Within-Species variability (cation-substitution), but lower accuracy dependent on 
spectral feature similarity and SNR 

o Establishment of effective Hyperion SWIR SNR as ~60:1 for mid-latitude, summer 
Hyperion scenes and as low as ~15:1 for similar winter scenes.  Results illustrate 
requirement for higher SNR for future spaceborne systems 
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5.0 RESEARCH SIGNIFICANCE 
The AIG/CSIRO proposal was for evaluation, validation, and demonstration of Hyperion’s 
capabilities for geologic mapping and mineral resource assessment, offering a low-cost, high-
experience, high-leverage approach. The effort drew heavily on previous work and outside funding 
sources to maximize the cost-effectiveness for the Hyperion evaluation and validation.  Examining 
Hyperion data collected over well-understood geological sites resulted in practical and important 
demonstrations of Hyperion data for geological mapping and mineral resource assessment.  
Validation of the spatial, spectral and radiometric performance of Hyperion was achieved using real-
world applications as the defining metric.  Additionally, analysis methods originally developed for 
airborne hyperspectral data were validated for use with satellite-based sensors.  The following points 
illustrate the significance of this research: 
 

•  These Hyperion geologic case histories demonstrate the analysis methodologies and level 
of information available from Hyperion for mineral mapping 

 
•  AIG’s/CSIRO’s hyperspectral data processing methods applied to Hyperion data lead to 

definition of specific key minerals and mineral assemblages 
 

•  Hyperion analysis and comparison to known geology derived from AVIRIS data and 
ancillary ground measurements generally validate on-orbit mineral mapping and 
Hyperion performance 

 
•  Hyperion’s lower SWIR SNR compared to AVIRIS results in lower data dimensionality, 

thus fewer endmembers can be identified and mapped than with AVIRIS   
 

•  Relatively low Hyperion SWIR SNR limits effectiveness for many datasets, placing them 
at the margin of operational utility (Some minerals mapped, others missed) 

 
•  Hyperion often confuses similar minerals that are separable using AVIRIS 

 
•  “Success” evident in “summer” (high-solar zenith angle) data for near-100% exposed, 

high-albedo areas with little mixing and little vegetation  
 

•  Results from AIG/CSIRO’s primary test sites demonstrate that more detailed within-
species mineral identification and mapping is possible in some cases under optimum 
acquisition conditions 

 
•  Even with the SNR problems noted, Hyperion is a success as a technology 

demonstration.  It performs well under most circumstances for basic mineral 
identification/mapping 

 
•  Hyperion has acted as a valuable learning experience for the future of spaceborne 

hyperspectral imaging.  Our (and others) Hyperion analyses illustrate that improved 
performance (principally SNR) is required for typical geologic applications.  Future 
satellite systems will need to be enhanced to improve overall mapping performance, the 
capability to make detailed mineralogical distinctions, and “all-season” mapping 
capabilities 
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